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Shallow Water Equations



Shallow Water Equations

The 2D Saint-Venant system of shallow water equations (SWE) is given

by:
(h)t + (qx)x + (qy )y = 0,

(qx)t +

(
(qx)2

h
+

1

2
gh2

)
x

+

(
qxqy

h

)
y

= −ghBx ,

(qy )t +

(
qxqy

h

)
x

+

(
(qy )2

h
+

1

2
gh2

)
y

= −ghBy ,

(1)

where

• g : the gravitational constant,

• h: the height of the water,

• qx , qy : the x- and y -discharges of the water, respectively,

• B(x , y): bottom topography function.

It can be obtained by depth-averaging the incompressible

three-dimensional Navier-Stokes equations
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Shallow Water Equations: Applications

• Applications:

• Tsunami

• Storm surge

• Dam break flooding

• Landslides and

avalanche

• “Shallow” means that

the vertical scale of the

flow is negligible

compared to the

horizontal scale of the

flow.
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Balanced/Conservation Laws

The vector form of SWE is

Ut + F (U)x + G (U)y = S(x , y ,U)

with I.C. and B.C.

where

•

U =

 h

qx

qy

 ,F (U) :=


qx

(qx )2

h +
1

2
gh2

qxqy

h

 ,G (U) :=


qy

qxqy

h

(qy )2

h +
1

2
gh2

 ,

• S(x , y ,U) = −gh(0,Bx ,By )>. The system is called a conservation

law if S ≡ 0, e.g., a flat bottom, B(x , y) = const.
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Balanced/Conservation Laws

Ut + F (U)x + G (U)y = S(x , y ,U)

with I.C. and B.C.

• The system is called hyperbolic if the eigenvalues of the matrix

nx
∂F

∂U
+ ny

∂G

∂U

is real-diagonalizable for any unit vector n = (nx , ny )>.

• SWE is hyperbolic when h > 0.
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Shallow Water Equations: Mathematical Difficulties

• Discontinuities can arise spontaneously in balanced/conservation

laws.

• Integral solution of a balanced law:∫
C

U(x , y , t2) dx dy =

∫
C

U(x , y , t1) dx dy

−
∫ t2

t1

∫
∂C

(nxF (U) + nyG(U)) ds dt +

∫ t2

t1

∫
C

S(x , y ,U) dx dy dt

where C × [t1, t2] is a prescribed spatial-temporal control volume,

and n = (nx , ny )> is the outer unit normal of the spatial domain C .

• No analytical solution can be found except for very simple initial

conditions.

7



Shallow Water Equations: Numerical Difficulties

• Well-balanced property:

• A well-balanced scheme should capture the exact solutions or small

perturbations to “lake-at-rest” steady-state

qx = qy ≡ 0, g(h + B) ≡ const

on relatively coarse grids.

• A non-well-balanced scheme suffers numerical instability on coarse

grids.

• Positivity-preserving: the height h ≥ 0 during time evolution.

• h < 0 is physically meaningless.

• Analytically, SWE loses hyperbolicity when h < 0.
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Numerical Solver:

Central-upwind Scheme



Central-upwind Scheme

The central-upwind scheme is a second-order Godunov-type finite volume

scheme whose semi-discrete form is

d

dt
U i,j = −

Fi+ 1
2 ,j
−Fi− 1

2 ,j

∆x
−
Gi,j+ 1

2
− Gi,j− 1

2

∆y
+ S i,j ,

which is an approximation to the integral form of the system of the

balanced law.

• U i,j ≈ 1
|Ci,j |

∫
Ci,j

U(x , y , t)dx dy .

• It is a well-developed scheme for solving hyperbolic systems of

balanced/conservation laws. [Nessyahu and Tadmor, 1990,

Kurganov and Tadmor, 2000, Kurganov et al., 2001,

Kurganov et al., 2007, Chertock et al., 2015, Liu et al., 2018].
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Central-upwind Scheme

• It is a Riemann-solver-free scheme with an upwind nature and thus

computationally cheaper than the Riemann-solver-based methods.

• With modifications, structures such as the positivity and the

well-balanced properties can be preserved for the discrete solution.

• At each discrete time level, the solution is approximated by a

piecewise linear (conservative, second-order accurate,

non-oscillatory) reconstruction.

Ũ(x , y) = U i,j + (Ux)i,j(x − xi ) + (Uy )i,j(y − yj), (x , y) ∈ Ci,j

• The reconstruction is then evolved to the new time level using the

integral form of the balanced law.

• The semi-discrete system is solved by a stable ODE solver of an

appropriate order.
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Central-upwind Scheme

• In the cell Ci,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], the approximated fluxes

at the cell interfaces are given by

Fi+ 1
2 ,j

:=
a+
i+ 1

2 ,j
F (UE

i,j)− a−
i+ 1

2 ,j
F (UW

i+1,j)

a+
i+ 1

2 ,j
− a−

i+ 1
2 ,j

+
a+
i+ 1

2 ,j
a−
i+ 1

2 ,j

a+
i+ 1

2 ,j
− a−

i+ 1
2 ,j

[
UW
i+1,j − UE

i,j

]
,

Gi+ 1
2 ,j

:=
b+
i,j+ 1

2

G (UN
i,j)− b−

i,j+ 1
2

G (US
i,j+1)

b+
i,j+ 1

2

− b−
i,j+ 1

2

+
b+
i,j+ 1

2

b−
i,j+ 1

2

b+
i,j+ 1

2

− b−
i,j+ 1

2

[
US
i,j+1 − UN

i,j

]
.

• UW
i,j ,U

E
i,j ,U

S
i,j ,U

N
i,j are the reconstructed values of the Ũ(x , y) at the

cell interfaces.

•
S i,j ≈

1

|Ci,j |

∫
Ci,j

S(x , y ,U)dxdy ,

is a well-balanced discretization of the source term (to cancel the

numerical flux exactly in “lake-at-rest” problems).

11



Central-upwind Scheme

•

a+
i+ 1

2 ,j
= max

{
λN

(
∂F

∂U
(UW

i+1,j)

)
, λN

(
∂F

∂U
(UE

i,j)

)
, 0

}
,

a−
i+ 1

2 ,j
= min

{
λ1

(
∂F

∂U
(UW

i+1,j)

)
, λ1

(
∂F

∂U
(UE

i,j)

)
, 0

}
,

b+
i,j+ 1

2

= max

{
λN

(
∂G

∂U
(US

i,j+1)

)
, λN

(
∂G

∂U
(UN

i,j)

)
, 0

}
,

b−
i,j+ 1

2

= min

{
λ1

(
∂G

∂U
(US

i,j+1)

)
, λ1

(
∂G

∂U
(UN

i,j)

)
, 0

}
,

are the propagation speeds at cell interfaces.

• Computing the propagation speeds is the major cost in solving the

stochastic Galerkin formulation of shallow water equations.
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Uncertainties in Shallow Water Equations: Motivation

Due to the intrinsic uncertainties of scientific devices, the uncertainties

can enter the system of the shallow water equations through

• the initial water displacements, or/and

• the bottom topography.

For example, if we model the bottom topography B as a d-dimensional

random field

B(x , y , ξ) = B0(x) +
d∑

k=1

Bk(x)ξk ,

where ξ = (ξ1, · · · , ξd) is a d-dimensional random variable,
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Modelling Uncertainties in Shallow Water Equations

the stochastic bottom will lead to ξ-parametrized system of shallow water
equations,

(h(x , y , t; ξ))t + (qx (x , y , t; ξ))x + (qy (x , y , t; ξ))y = 0,

(qx (x , y , t; ξ))t +

(
(qx (x , y , t; ξ))2

h(x , y , t; ξ)
+

gh2(x , y , t; ξ)

2

)
x

+

(
qx (x , y , t; ξ)qy (x , y , t; ξ)

h(x , y , t; ξ)

)
y

= −gh(x , y , t; ξ)Bx (x , y ; ξ),

(qy (x , y , t; ξ))t +

(
qx (x , y , t; ξ)qy (x , y , t; ξ)

h(x , y , t; ξ)

)
x

+

(
(qy (x , y , t; ξ))2

h(x , y , t; ξ)
+

gh2(x , y , t; ξ)

2

)
y

= −gh(x , y , t; ξ)By (x , y ; ξ).

In order to provide more reliable model-based predictions, understanding

how the uncertainties propagate in the model is necessary.
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Modeling Uncertainties in Shallow Water Equations: Polyno-

mial Chaos Expansion

• For a given second-order random field f (ξ), the polynomial chaos

expansion (PCE) [Xiu and Karniadakis, 2002] is the spectral

expansion:

f (ξ) =
∞∑
k=1

f̂kφk(ξ), φ1(ξ) = 1.

where ξ is a known random variable, {φk(ξ)}∞k=1 are the

orthonormal polynomial basis functions with respect to the density

function ρ(ξ) of ξ.
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Modeling Uncertainties in Shallow Water Equations: Polyno-

mial Chaos Expansion

• The K -term PCE approximation is the truncation in the

finite-dimensional polynomial space PK = span{φk}k∈[K ]:

f (ξ) ≈ fK (ξ) =
K∑

k=1

f̂kφk(ξ)

• K is the dimension of the solution space. The only requirement for

PK is that it contains φ1 = 1.

• Using the orthogonality, it can be shown that

E[fK (ξ)] = f̂1, var(fK (ξ)) =
K∑

k=2

f̂ 2
k
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Modeling Uncertainties in Shallow Water Equations: Polyno-

mial Chaos Expansion

Ansatz: the solutions are in the space PK = span{φk}k∈[K ], i.e.,

h ' hK :=
K∑

k=1

ĥk(x , y , t)φk(ξ),

qx ' (qx)K :=
K∑

k=1

(q̂x)k(x , y , t)φk(ξ),

qy ' (qy )K :=
K∑

k=1

(q̂y )k(x , y , t)φk(ξ),
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Stochastic Galerkin Method

One way to solve the truncated PCE system is the stochastic Galerkin

method, which seeks a solution in the solution space PK such that the

residual is orthogonal to PK .

• Stochastic Galerkin (SG) method leads to a new system of PDEs for

the coefficients of polynomials in the K -term PCE approximation.

SG method is intrusive since it requires new solvers and new codes

for the new system.

• There are many provable properties for SG systems. For example, it

is near optimal in L2
ρ sense for the stationary problems.

• It is a well-established method for diffusion-dominated and

stationary problems

[Xiu and Shen, 2009, Cohen et al., 2010, Ullmann et al., 2012].

• It is less mature and settled for hyperbolic system of

conservation/balanced laws.
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Stochastic Galerkin Method: Challenges Ahead

• Hyperbolicity-Preserving:

• SG systems may loss hyperbolicity [Després et al., 2013].

• In [Wu et al., 2017], a strategy is proposed to regain the

hyperbolicity of the quasilinear hyperbolic system, but it is limited to

the quasilinear form.

• In [Gerster et al., 2019], the PCEs of the Roe variables are

introduced. But the approach is effective for certain choices of

distributions for ξ.

• In [Poëtte et al., 2009], the PCEs of the entropy variables are

introduced. But the approach requires to solve an optimization

problem for every cell at every time step. The computations can be

very expensive.
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Stochastic Galerkin Method: Challenges Ahead

• Well-Balanced Preserving:

• The numerical solution should preserve the stochastic variant of the

“lake-at-rest” solution

qx
K (x , y , t; ξ) = qy

K (x , y , t; ξ) ≡ 0,

hK (x , y , t; ξ) + GK [B](x , y ; ξ) ≡ C(ξ).

• Our contributions [Dai et al., 2021]

• We derive a hyperbolicity-preserving stochastic Galerkin formulations

using only the PCEs of the conserved variables (h, qx , qy ) and a

stochastic variant P(ĥ) > 0 of the deterministic positivity condition

to guarantee the hyperbolicity.

• We develope a central-upwind type scheme that can preserve

stochastic positivity condition P(ĥ) > 0 and thus preserve

hyperbolicity at discrete time levels.

• We derive a well-balanced discretization of the source term for our

scheme.
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Stochastic Galerkin Method: Challenges Ahead
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Figure 1: Instability in a non-well-balanced scheme. Left: numerical results of a

non-well-balanced scheme. Right: numerical results of a well-balanced scheme
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Notations

For a 2nd-order random field z(ξ), define the K -term PCE operator GK
to be

GK [z ](ξ) :=
K∑

k=1

ẑkφk(ξ)

Denote the vector of the coefficients in by

ẑ = (ẑ1, · · · , ẑK )>.
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Preliminaries: PCE for Product And Ratio

The K -term PCE for the product of two random fields a(ξ) and b(ξ) is

usually approximated by their pseudo-spectral product

GK [a, b] := GK [GK [a] GK [b]] =
K∑

k=1

 K∑
m,`=1

âmb̂`〈φmφ`, φk〉ρ

φk(ξ).

For single-signed radom field a(ξ), the K -term PCE of ratio b/a can be

approximated by solving

GK
[
a,

b

a

]
= GK [b]
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Preliminaries: PCE for Product And Ratio

Define the symmetric matrix:

P(â) :=
K∑

k=1

âkMk Mk := (〈φ`φm, φk〉ρ)`,m=0,··· ,K

Then the PCE of the pesudo-spectral product is

ĜK [a, b] = P(â)b̂ = P(b̂)â,

and the PCE of the ratio is the solution to

P(â)

(̂
b

a

)
= b̂,

whose solution introduce a new operator

G†K

[
b

a

]
(ξ) :=

K∑
k=1

ckφk(ξ),
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Assumptions for Hyperbolicity-Preserving Formulation

• For (qx)2/h and (qy )2/h terms:

(qx)2

h
= qx qx

h
; −→ GK

[
(qx

K )2

hK

]
= GK

[
qx
K G†K

[
qx
K

hK

]]
,

(qy )2

h
= qy qy

h
−→ GK

[
(qy

K )2

hK

]
= GK

[
qy
K G
†
K

[
qy
K

hK

]]
.

• For qxqy/h terms

qxqy

h
= qx q

y

h
−→ GK

[
qx
Kq

y
K

hK

]
= GK

[
qx
K G†K

[
qy
K

hK

]]
in x-direction,

qxqy

h
= qy q

x

h
−→ GK

[
qx
Kq

y
K

hK

]
= GK

[
qy
K G
†
K

[
qx
K

hK

]]
in y -direction.

Note that, in general, the two approximations for qxqy/h are

different.
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Hyperbolicity-Preserving SG Formulation

With these assumptions, we obtain ĥ

q̂x

q̂y


t︸ ︷︷ ︸

Ût

+

 q̂x

P(q̂x )P−1(ĥ)q̂x + 1
2
gP(ĥ)ĥ

P(q̂x )P−1(ĥ)q̂y


x︸ ︷︷ ︸

F (Û)x

+

 q̂y

P(q̂y )P−1(ĥ)q̂x

P(q̂y )P−1(ĥ)q̂y + 1
2
gP(ĥ)ĥ


y︸ ︷︷ ︸

G(Û)y

=

 0

−gP(ĥ)B̂x

−gP(ĥ)B̂y


︸ ︷︷ ︸

S(Û,B̂)

.

(2)
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Hyperbolicity-Preserving SG Formulation

Theorem 1.

If the matrix P(ĥ) is strictly positive definite, the SG formulation (2) is

hyperbolic.

• In general, the theorem does not hold for other stochastic Galerkin

formulations of the shallow water equations.

• The condition P(ĥ) > 0 is a stochastic variant of the positive water

height. When there is no uncertainty, it reduces to the hyperbolicity

condition h > 0 for the deterministic shallow water equations,

P(ĥ) = (ĥ1)Id > 0⇔ ĥ1 > 0.
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Hyperbolicity-Preserving SG Formulation

Theorem 2.

Given K , let nodes ξm and weights τm satisfying

{(ξm, τm)}Mm=1 ⊂ Rd × (0,∞) represent any M-point positive quadrature

rule that is exact on P3
K , i.e.,∫

Rd

p(ξ)ρ(ξ)dξ =
M∑

m=1

p(ξm)τm, p ∈ P3
K ,

where P3
K is the set of all the triple products of the elements in PK . If

hK (x , y , t; ξm) > 0 ∀ m = 1, . . . ,M,

then the stochastic Galerkin system (2) is hyperbolic.
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Summary of Our Scheme

• We derive a CFL-type condition to preserve the hyperbolicity of our

SG system at every discrete time level for the cell averages.

• We introduce a filter to preserve the hyperbolicity of the system at

the cell interfaces in the second-order piecewise linear

reconstructions,

˜̂
U(x , y) = Û i,j + (Ûx)i,j(x − xi ) + (Ûy )i,j(y − yj), (x , y) ∈ Ci,j .

• We introduce other reconstruction procedures to tackle the possible

failures of the code at near dry state (h ∼ 0) due to round-off errors.

• We derive a well-balanced discretization of the source term that

captures the stochastic “lake-at-rest” state exactly at discrete level.
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Hyperbolicity-Preserving Time Discretization

Lemma 3.

Let {ξm}m∈[M] be the nodes of a quadrature rule satisfying the conditions

of theorem 2 and Φ(ξ) = (φ1(ξ), . . . , φK (ξ))>. Denote the numerical

approximation to ĥi,j(t
n) by ĥ

n

i,j and ∆tn := tn+1 − tn. Assume that

ĥ
n

i,j(ξm) := (ĥ
n

i,j)
>Φ(ξm) > 0 for m ∈ [M]. If ∆tn satisfies

∆tn < ∆tnh := min
m∈[M]

i∈[Nx ],j∈[Ny ]



∣∣∣∣∣∣∣∣∣∣∣
(ĥ

n

i,j)
>Φ(ξm)[

F ĥ

i+ 1
2
,j

(tn)−F ĥ

i− 1
2
,j

(tn)

∆x
+
Gĥ
i,j+ 1

2

(tn)−Gĥ
i,j− 1

2

(tn)

∆y

]>
Φ(ξm)

∣∣∣∣∣∣∣∣∣∣∣


,

then the flux Jacobian is diagonalizable with real eigenvalues at the cell

averages Û i,j .

30



Filtering at Pointwise Reconstructions

We filter ĥW ,E ,N,S
i,j by(
ĥ
W ,E ,N,S

i,j

)
1

=
(
ĥW ,E ,N,S
i,j

)
1
,(

ĥ
W ,E ,N,S

i,j

)
k

= (1− µn
i,j)
(
ĥW ,E ,N,S
i,j

)
k
, k = 2, . . . ,K ,

(3)

where µn
i,j is a parameter such that

hW ,E ,N,S
i,j (ξm) = (1− µn

i,j)(ĥW ,E ,N,S
i,j )1 + µn

i,jh
W ,E ,N,S
i,j (ξm) > 0

for all quadrature points ξm,m ∈ [M].
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Reconstructing Negative First Moment

For negative first moment, instead of using filter, we use the

reconstruction,

if
(
ĥWi,j

)
1
≤ 0 then take ĥWi,j = 0, ĥEi,j = 2ĥ

n

i,j ,

if
(
ĥEi,j

)
1
≤ 0 then take ĥEi,j = 0, ĥWi,j = 2ĥ

n

i,j ,

if
(
ĥNi,j

)
1
≤ 0 then take ĥNi,j = 0, ĥSi,j = 2ĥ

n

i,j ,

if
(
ĥSi,j

)
1
≤ 0 then take ĥNi,j = 0, ĥNi,j = 2ĥ

n

i,j .
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Velocity Desingularization

In the central-upwind scheme, we need to compute the PCE for the

velocities

û = P−1(ĥ)q̂x , v̂ = P−1(ĥ)q̂y ,

which may produce large roundoff error when P(ĥ) is near singular.
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Velocity Desingularization

We proposed the following desingularization process

û = P−1
cor (ĥ)q̂x , v̂ = P−1

cor Qq̂y , (4)

where

P−1
cor (ĥ) = Q>ΠcorQ.

Here, Q is the eigenmatrix such that P−1(ĥ) = Q>ΠQ,

Π = diag(λ1, . . . , λK ) is the diagonal matrix of eigenvalues, and

Πcor = diag(λcor
1 , . . . , λcor

K ), λcor
k =

√
2λk√

λ4
k + max{λ4

k , ε
4}
.

.
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Well-Balanced Property

A stochastic variant of the well-balanced property is

qxK (x , y , t; ξ) = qyK (x , y , t; ξ) ≡ 0, hK (x , y , t; ξ)+GK [B](x , y ; ξ) ≡ C (ξ),

which is equivalent to

q̂x = q̂y ≡ 0, ĥ + B̂ ≡ Ĉ .
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Well-Balanced Property

Theorem 4.
The central-upwind scheme is well-balanced if we choose

Ŝ ij =

(
(Ŝ

(1)

i,j )>, (Ŝ
(2)

i,j )>, (Ŝ
(3)

i,j )>
)>

, where



Ŝ
(1)

i,j = 0,

Ŝ
(2)

i,j = −gP(ĥi,j)

(
B̂i+ 1

2 ,j
− B̂i− 1

2 ,j

∆x

)
,

Ŝ
(3)

i,j = −gP(ĥi,j)

(
B̂i,j+ 1

2
− B̂i,j− 1

2

∆y

)
.
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Numerical Results



Numerical Example: Comparison with Collocation Solution

A deterministic water surface

w(x , 0; ξ) =

{
1 x < 0

0.5 x > 0
, q(x , 0; ξ) = 0, (5)

and with a stochastic bottom topography

B(x ; ξ) =

{
0.125(cos(5πx) + 2) + 0.125ξ, |x | < 0.2

0.125 + 0.125ξ, otherwise
, (6)

where ξ ∼ U(−1, 1).
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Numerical Example: Comparison with Collocation Solution

Figure 2: Initial Water Surface for Equation (5)-Equation (6). Blue solid line: water

surface. Red dashed line: mean bottom topography. Light grey region: the

0.005− 0.995 quantile of the stochastic bottom. Dark grey region: the 0.2− 0.8

quantile of the stochastic bottom.
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Numerical Example: Comparison with Collocation Solution
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Figure 3: Results for Equation (5)-Equation (6), water surfaces. Top left: stochastic

Galerkin, K = 9,∆x = 1/800. Top right: stochastic Galerkin, K = 17,∆x = 1/800.

Bottom: stochastic collocation, K = 9,∆x = 1/800. Pink dot-dashed line: variance

of the water surface.
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Numerical Example: Comparison with Collocation Solution
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Figure 4: Results for Equation (5)-Equation (6), discharges. Top left: stochastic

Galerkin, K = 9,∆x = 1/800. Top right: stochastic Galerkin, K = 17,∆x = 1/800.

Bottom: stochastic collocation, K = 9,∆x = 1/800. Pink dot-dashed line: variance

of the discharges.
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Numerical Example: Possible Loss of Positivity

Another deterministic water surface

w(x , 0; ξ) =

{
5.0 x ≤ 0.5,

1.6 x > 0.5,
u(x , 0, ξ) =

{
1.0 x ≤ 0.5,

− 2.0 x > 0.5,
(7)

and a stochastic discontinuous bottom

B(x ; ξ) =

{
1.5 + 0.1ξ x ≤ 0.5,

1.1 + 0.1ξ x > 0.5,
(8)

where ξ ∼ Beta(2, 4).
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Numerical Example: Possible Loss of Positivity

Figure 5: Initial Water Surface for Equation (7)-Equation (8). Blue solid line: water

surface. Red dashed line: mean bottom topography. Light grey region: the

0.005− 0.995 quantile of the stochastic bottom. Dark grey region: the 0.2− 0.8

quantile of the stochastic bottom.
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Numerical Example: Possible Loss of Positivity

M maxm ξm Negative Region NM Pr[ξ ∈ NM ]

15 0.934077 [0.934079, 1] 5.75× 10−6

17 0.946839 [0.946899, 1] 2.43× 10−6

19 0.956205 [0.956320, 1] 1.12× 10−6

21 0.963310 [0.963980, 1] 5.18× 10−7

Table 1: Numerical study of ξ-region and associated probabilities where the water

height is negative.

Increasing the number of quadrature points will make the negative water

height less likely to occur.
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Numerical Example: Order of Convergence

w(x , y , 0; ξ) = 1, u(x , y , 0; ξ) = 0.3, v(x , y , 0; ξ) = 0, (9)

and bottom topography:

B(x , y ; ξ) = 0.5e−25(x−1)2−50(y−0.5)2

+ 0.1(ξ + 1), (10)

where ξ ∼ U(−1, 1).
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Numerical Example: Order of Convergence

Figure 6: Reference solution (grid size 800× 800) for the water Surface for

Equation (9)-Equation (10) at t = 0.07. Left: mean. Right: standard deviation.
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Numerical Example: Order of Convergence

N=4 N=8

Error Order Error Order

100× 100 1.475875e-05 − 1.475865e-05 −
200× 200 4.343711e-06 1.764571 4.343714e-06 1.764559

400× 400 1.296122e-06 1.744727 1.296122e-06 1.744727

The error is computed by

‖uh − uref‖L1(Ωx,y ),L2(Ωξ),

where uh is the numerical solution, uref is the reference solution

computed on the 800× 800 grid, Ωx,y is the physical domain, and Ωξ is

the stochastic domain. The orders are similar to the results in the

deterministic test [Bryson et al., 2011]. We expect computing the

reference solution on a finer grid will gives higher orders.
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Numerical Example: Another Comparison with Collocation So-

lution

Another stochastic bottom

w(x , y , 0; ξ) =

{
1.01, if 0.05 < x < 0.15,

1, otherwise,
u(x , y , 0; ξ) = v(x , y , 0; ξ) = 0.

(11)

Bottom topography:

B(x , y ; ξ) = 0.8e−5(x−0.9)2−50(y−0.5)2

+ 0.1(ξ + 1). (12)
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Numerical Example: Another Comparison with Collocation So-

lution

Figure 7: Numerical solutions to (11)-(12), mean water surface at t = 1.2, grid size

400× 400. Left: K = 4; Middle: K = 8. Right: collocation solution. (60 contours).

The number of collocation points is 100

48



Numerical Example: Another Comparison with Collocation So-

lution

Figure 8: Numerical solutions to (11)-(12), std of the water surface at t = 1.2, grid

size 400× 400. Left: K = 4; Middle: K = 8. Right: collocation solution. (60

contours). The number of collocation points is 100
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Numerical Example: Two Dimensional Stochastic Space

Uncertainties on the position of the bottom topography:

w(x , y , 0; ξ) =

{
1.01, if 0.05 < x < 0.15,

1, otherwise,
u(x , y , 0; ξ) = v(x , y , 0; ξ) = 0.

(13)

Bottom topography:

B(x , y ; ξ) = 0.8e−5(x−0.9+0.1ξ1)2−50(y−0.5+0.1ξ2)2

. (14)

where ξ = (ξ1, ξ2), ξ1 ∼ B(4, 2), and ξ2 ∼ U(−1, 1). The polynomial

basis are the tensorial orthonormal polynomials of degree at most 3 for ξ1

and ξ2.
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Numerical Example: Two Dimensional Stochastic Space

Figure 9: Numerical solution to (13)-(14), disk-glyph over mean contours, where the

radii of the disks indicate the magnitude of the standard deviation, t = 0.9, 1.2 (left

and right). The largest disks are corresponding to the standard deviation values

0.0015012, 0.0010295, respectively.

51



Numerical Example: Water Around An Island

Stochastic water surface and deterministic bottom:

w(x , y , 0; ξ) =

{
1 + 0.0001(ξ + 1) if − 0.4 < x < −0.3

1 otherwise
, (15)

u(x , y , 0; ξ) = v(x , y , 0; ξ) = 0. (16)

Bottom topography:

B(x , y ; ξ) =


0.9998, r ≤ 0.1,

9.998(0.2− r), 0.1 < r ≤ 0.2,

0, otherwise,

r :=
√
x2 + y2. (17)
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Numerical Example: Water Around An Island

The radius of the glyphs are proportional to the values of the standard

deviation at the cells. The glyphs for part of the cells are shown in the

movie.
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Thank you!
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