Hyperbolcity-Preserving Well-Balanced Stochastic Galerkin Method for
Shallow Water Equations

Abstract

We study the stochastic Galerkin (SG) method
for stochastic parameterized shallow water equa-
tions. Our work comprises the following aspects:

e A hyperbolicity-preserving stochastic Galerkin
formulation for the shallow water equations
using only the conserved variables.

e A sufficient condition to preserve the
hyperbolicity, which is a stochastic variant of
the deterministic positivity condition.

e A computationally tractable condition to
cuarantee the hyperbolicity.

e A central-upwind scheme that preserves both
the hyperbolicity and the well-balanced
property at discrete time levels.

Motivations

e Uncertainties can enter the shallow water system,
for example, via the noisy measurement of the

bottom.

e A SG formulation of shallow water equations is
not necessarily hyperbolic.

e A non-well-balanced scheme may lead to spurious
oscillations on relatively coarse grid.

Stochastic Parameterized Shallow
Water System
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h 1s the water height, ¢, and g, are the x- and y-
discharges, and B is the time-independent surface.
All the variables are £&-dependent random fields, e.g.

h=h(xy,t¢~E).

Polynomial Chaos Expansion

(PCE)

e An unknown random field z(x, y,t, &) is
represented in the L?) orthonormal basis { ¢ }rer,
where p = p(&) is the density of the random

parameter.
(2.9, 1.6) = X Bz y.)0rl€)

o K-term truncated PCE:
K
H/\[Z] = Z 276(377 Y, t>¢/€(€)7

k=1
where A is the index set for the (possibly

multivariate) polynomials, the cardinality of A is

K, and ¢1(§) =

e A K-term PCE approximation to product of two
random fields a and b:

ZIA[a, b = HA [HA[CL] HA[bH :

e A K-term PCE approximation to the ratio of
two random fields a and b:

[T\ [b/a] : the solution to I, [a, b/a] = T1,[b].

Notations
°Z = (217 x 72K>T
.7)(2) = Z{;(:l 2]{;./\/1]{;, (Mk?)ﬁm — <¢k> ¢€¢m>p-
e [t can be shown that
Mifa,b] = P(@)h, | [b/a] = P~} (a)b.
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Stochastic Galerkin (SG) Method

e Ansatz:
K
h~hy, = 162—21 hie(z, y, ) on(§),
K
q° =g\ = ];(é?”)k(l’, Yy, t)or(§),
K
¢ ~ q\ = ];(qu)k(Ia Yy, t)or(§),

e Stochastic Galerkin method applies standard
Galerkin procedure in the stochastic & space,

which leads to a new system of partial differential

equations with respect to the PCE coefficients.

SG Projection of Nonlinear Terms
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The Main Results

Hyperbolicity-Preserving SG Formulation
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Theorem (Hyperbolicity-preserving condition)

The system (1) is hyperbolic if the matriz P(h) >

The condition P(iz) > ( reduces to h > 0 when the &-dependence is dropped from the system.

Theorem (A computationally tractable condition)

Given N, let nodes &, and weights T, satisfying {(&m, Tm) b

quadrature rule that is exact on

3
PAS::span{Hgbn ' ne[K]p.
n=1

If

M _, represent any M -point positive

\

/

ha(x,y,t,6n) >0 Vm=1,..., M, (3)

then the matriz P(h) >

points to preserve the hyperbolicity of (1).

Second-Order Central-Upwind
Scheme

Assuming uniform rectangular partition over a rect-
angular region,

dey _ T = Fily Y Yl g
1,7

U,
dt "’ Ax Ay

where U ; ; represent the cell averages of the vector

U in rectangular cell C; ;.

e Source term:
. 1 I
Si i~ S(U, B)dzdy.
TGl /CJ

e Numerical fluxes:
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e Propagation speeds:
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In other words, we only need to ensure the positivity of the stochastic water heights at some quadrature

U%W’ © are the pointwise values of the second-

order accurate, non-oscillatory piecewise linear
reconstructions of U; ; at the midpoints of the
boundaries, i.e.,

Ax Ax

U =U,;+ T(Ux)z',j» U' =U,; - T(Ux)z,j»
Ay Ay

U =U,;+ 7(Uy)i]7 U’ =U,;— T(Uy%,j»

Hyperbolicity-Preserving
Well-Balanced Central-Upwind
Scheme

e Stochastic “lake-at-rest” state:

qi = a1 =0, L Jar=ar =L
hy+ LBl =C(€),  \h+B=C.

e The PCE vector B for the bottom function is
replaced by its piecewise bilinear interpolant.

=g =0,

e The pointwise values of the reconstructions of the
PCE of water surtace 7 are reconstructed. The
reconstructed water height are computed by
h=7—B.

o The first moments h; are “corrected” following a
similar procedure to the central-upwind scheme
for the deterministic shallow water equations.

e The PCE vectors h are filtered to satisfies the
condition (3).

Numerical simulations

Deterministic initial water surface:

1.01,if 0.05 < 2 < 0.15,
n(x,y,0,§) = «

1, otherwise,

\

Deterministic initial velocity field (O-discharge):

u(z,y,0,§) =v(z,y,0,§) = 0.

Stochastic bottom topography:
B(x y 5) — 08 6—5(3:—0.9+0.1§<1))2—50(y—0.5+0.1§(2))2.

Randomness:

¢ ~ Beta(4, 2), 2 ~U-1,1).
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Figure 1:Numerical results at T' = 0.6 (top), T' = 1.2 (middle),
and T" = 1.8 (bottom), respectively. The largest disks are
corresponding to the standard deviation values 2.20e-3, 2.00e-
3, and 1.20e-3, respectively. The index set A = {(vV), v1?)) €
N2 | 0 < v ) < 3} The polynomial basis is chosen to

be the tensor-product set. Animation can be found in https:
//ibit.1y/Q6H4
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