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Abstract

We study the stochastic Galerkin (SG) method
for stochastic parameterized shallow water equa-
tions. Our work comprises the following aspects:

•A hyperbolicity-preserving stochastic Galerkin
formulation for the shallow water equations
using only the conserved variables.
•A sufficient condition to preserve the
hyperbolicity, which is a stochastic variant of
the deterministic positivity condition.
•A computationally tractable condition to
guarantee the hyperbolicity.
•A central-upwind scheme that preserves both
the hyperbolicity and the well-balanced
property at discrete time levels.

Motivations

•Uncertainties can enter the shallow water system,
for example, via the noisy measurement of the
bottom.
•A SG formulation of shallow water equations is
not necessarily hyperbolic.
•A non-well-balanced scheme may lead to spurious
oscillations on relatively coarse grid.

Stochastic Parameterized Shallow
Water System
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h is the water height, qx and qy are the x- and y-
discharges, and B is the time-independent surface.
All the variables are ξ-dependent random fields, e.g.,
h = h(x, y, t, ξ).

Polynomial Chaos Expansion
(PCE)

•An unknown random field z(x, y, t, ξ) is
represented in the L2

ρ orthonormal basis {φk}k∈R,
where ρ := ρ(ξ) is the density of the random
parameter.

z(x, y, t, ξ) =
∞∑
k=1

ẑk(x, y, t)φk(ξ),

•K-term truncated PCE:

ΠΛ[z] :=
K∑
k=1

ẑk(x, y, t)φk(ξ),

where Λ is the index set for the (possibly
multivariate) polynomials, the cardinality of Λ is
K, and φ1(ξ) = 1.
•A K-term PCE approximation to product of two
random fields a and b:

ΠΛ[a, b] := ΠΛ [ΠΛ[a] ΠΛ[b]] .
•A K-term PCE approximation to the ratio of
two random fields a and b:

Π†Λ [b/a] : the solution to ΠΛ [a, b/a] = ΠΛ[b].

Notations

• ẑ = (ẑ1, . . . , ẑK)>.
•P(ẑ) := ∑K

k=1 ẑkMk, (Mk)`m = 〈φk, φ`φm〉ρ.
• It can be shown that

Π̂Λ[a, b] = P(â)b̂, Π̂†Λ [b/a] = P−1(â)b̂.

Stochastic Galerkin (SG) Method

•Ansatz:

h ' hΛ :=
K∑
k=1

ĥk(x, y, t)φk(ξ),

qx ' qxΛ :=
K∑
k=1

(q̂x)k(x, y, t)φk(ξ),

qy ' qyΛ :=
K∑
k=1

(q̂y)k(x, y, t)φk(ξ),

•Stochastic Galerkin method applies standard
Galerkin procedure in the stochastic ξ space,
which leads to a new system of partial differential
equations with respect to the PCE coefficients.

SG Projection of Nonlinear Terms
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The Main Results

Hyperbolicity-Preserving SG Formulation
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 , Ŝ(Û , B̂) =


0

−gP(ĥ)B̂x
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Theorem (Hyperbolicity-preserving condition)

The system (1) is hyperbolic if the matrix P(ĥ) > 0.

The condition P(ĥ) > 0 reduces to h > 0 when the ξ-dependence is dropped from the system.

Theorem (A computationally tractable condition)

Given Λ, let nodes ξm and weights τm satisfying {(ξm, τm)}Mm=1 represent any M-point positive
quadrature rule that is exact on

P 3
Λ := span


3∏

n=1
φn

∣∣∣ n ∈ [K]
 .

If
hΛ(x, y, t, ξm) > 0 ∀ m = 1, . . . ,M, (3 )

then the matrix P(ĥ) > 0.

In other words, we only need to ensure the positivity of the stochastic water heights at some quadrature
points to preserve the hyperbolicity of (1).

Second-Order Central-Upwind
Scheme

Assuming uniform rectangular partition over a rect-
angular region,
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where U i,j represent the cell averages of the vector
Û in rectangular cell Ci,j.
•Source term:
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1
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Ĝ(US

i,j+1)

b+
i,j+1

2
− b−

i,j+1
2

+
b+
i,j+1

2
b−
i,j+1

2

b+
i,j+1

2
− b−

i,j+1
2

[
US

i,j+1 −UN
i,j

]
.

•Propagation speeds:
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i,j are the pointwise values of the second-

order accurate, non-oscillatory piecewise linear
reconstructions of U i,j at the midpoints of the
boundaries, i.e.,
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Hyperbolicity-Preserving
Well-Balanced Central-Upwind

Scheme

•Stochastic “lake-at-rest” state:q
x
Λ = qyΛ ≡ 0,
hΛ + ΠΛ[B] ≡ C(ξ), ⇒

q̂
x = q̂y ≡ 0,
ĥ + B̂ ≡ Ĉ.

•The PCE vector B̂ for the bottom function is
replaced by its piecewise bilinear interpolant.
•The pointwise values of the reconstructions of the
PCE of water surface η̂ are reconstructed. The
reconstructed water height are computed by
ĥ := η̂ − B̂.
•The first moments ĥ1 are “corrected” following a
similar procedure to the central-upwind scheme
for the deterministic shallow water equations.
•The PCE vectors ĥ are filtered to satisfies the
condition (3).

Numerical simulations

Deterministic initial water surface:

η(x, y, 0, ξ) =
1.01, if 0.05 < x < 0.15,

1, otherwise,
Deterministic initial velocity field (0-discharge):

u(x, y, 0, ξ) = v(x, y, 0, ξ) = 0.
Stochastic bottom topography:
B(x, y, ξ) = 0.8e−5(x−0.9+0.1ξ(1))2−50(y−0.5+0.1ξ(2))2

.

Randomness:
ξ(1) ∼ Beta(4, 2), ξ(2) ∼ U(−1, 1).

Figure 1:Numerical results at T = 0.6 (top), T = 1.2 (middle),
and T = 1.8 (bottom), respectively. The largest disks are
corresponding to the standard deviation values 2.20e-3, 2.00e-
3, and 1.20e-3, respectively. The index set Λ = {(ν(1), ν(2)) ∈
N

2 | 0 ≤ ν(1), ν(2) ≤ 3}. The polynomial basis is chosen to
be the tensor-product set. Animation can be found in https:
//ibit.ly/Q6H4
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