Hyperbolicity-Preserving Well-Balanced Stochastic Galerkin Method for Shallow Water Equations

Dihan Dai¹(dai@math.utah.edu), Yekaterina Epshteyn¹, Akil Narayan^{1,2}

¹Department of Mathematics, University of Utah

²Scientific Computing and Imaging Institute (SCI), University of Utah

Abstract	Stochastic Galerkin (SG) Method	SG Projection of Nonlinear Terms	Numerical simulations
We study the stochastic Galerkin (SG) method for stochastic parameterized shallow water equa- tions. Our work comprises the following aspects:	• Ansatz: $h \simeq h_{\Lambda} \coloneqq \sum_{\substack{k=1 \ K}}^{K} \hat{h}_k(x, y, t) \phi_k(\xi),$	$\frac{(q^{x})^{2}}{h} = \frac{q^{x}}{h} q^{x} \longrightarrow \Pi_{\Lambda} \left[\frac{(q^{x}_{\Lambda})^{2}}{h_{\Lambda}} \right] = \Pi_{\Lambda} \left[q^{x}_{\Lambda} \Pi^{\dagger}_{\Lambda} \left[\frac{q^{x}_{\Lambda}}{h_{\Lambda}} \right] \right],$	Deterministic initial water surface: $\eta(x, y, 0, \xi) = \begin{cases} 1.01, \text{ if } 0.05 < x < 0.15, \\ 1, & \text{otherwise,} \end{cases}$
• A hyperbolicity-preserving stochastic Galerkin formulation for the shallow water equations	$egin{aligned} q^x &\simeq q^x_\Lambda \coloneqq \sum_{k=1}^{\kappa} (\widehat{q^x})_k(x,y,t) \phi_k(\xi), \ q^y &\simeq q^y_\Lambda \coloneqq \sum_{k=1}^{K} (\widehat{q^y})_k(x,y,t) \phi_k(\xi), \end{aligned}$	$\frac{(q^{s})^{2}}{h} = \frac{q^{s}}{h} q^{y} \longrightarrow \Pi_{\Lambda} \left[\frac{(q^{s}_{\Lambda})^{2}}{h_{\Lambda}} \right] = \Pi_{\Lambda} \left[q^{y}_{\Lambda} \Pi^{\dagger}_{\Lambda} \left[\frac{q^{s}_{\Lambda}}{h_{\Lambda}} \right] \right].$ $\text{2 For } q^{x}q^{y}/h \text{ in } (q^{x}q^{y}/h)_{x},$ $x = u = u = \left[\int_{X} \left[\frac{x}{h_{\Lambda}} \right] \right] = \left[\int_{X} \left[\frac{q^{s}_{\Lambda}}{h_{\Lambda}} \right] \right].$	Deterministic initial velocity field (0-discharge): $u(x, y, 0, \xi) = v(x, y, 0, \xi) = 0.$ Stochastic bottom topography:

using only the conserved variables.

- A sufficient condition to preserve the hyperbolicity, which is a stochastic variant of the deterministic positivity condition.
- A computationally tractable condition to guarantee the hyperbolicity.
- A central-upwind scheme that preserves both the hyperbolicity and the well-balanced property at discrete time levels.

Motivations

- Uncertainties can enter the shallow water system, for example, via the noisy measurement of the bottom.
- A SG formulation of shallow water equations is not necessarily hyperbolic.
- A non-well-balanced scheme may lead to spurious oscillations on relatively coarse grid.

Stochastic Parameterized Shallow Water System k=1• Stochastic Galerkin method applies standard Galerkin procedure in the stochastic ξ space, which leads to a new system of partial differential equations with respect to the PCE coefficients.

 $B(x, y, \xi) = 0.8e^{-5(x-0.9+0.1\xi^{(1)})^2 - 50(y-0.5+0.1\xi^{(2)})^2}.$ Randomness:

$$\xi^{(1)} \sim \text{Beta}(4,2), \qquad \xi^{(2)} \sim \mathcal{U}(-1,1).$$

The Main Results

Hyperbolicity-Preserving SG Formulation

$$\frac{\partial}{\partial t}(\widehat{U}) + \frac{\partial}{\partial x}(\widehat{F}(\widehat{U})) + \frac{\partial}{\partial y}(\widehat{G}(\widehat{U})) = \widehat{S}(\widehat{U},\widehat{B}).$$

Here,
$$\widehat{U} \coloneqq (\widehat{h}^{\top}, \widehat{q^{x}}^{\top}, \widehat{q^{y}}^{\top})^{\top}$$
, and

$$\widehat{F}(\widehat{U}) = \begin{pmatrix} \widehat{q^{x}} & & \\ \mathcal{P}(\widehat{q^{x}})\mathcal{P}^{-1}(\widehat{h})\widehat{q^{x}} + \frac{1}{2}g\mathcal{P}(\widehat{h})\widehat{h} \\ \mathcal{P}(\widehat{q^{y}})\mathcal{P}^{-1}(\widehat{h})\widehat{q^{y}} & \end{pmatrix}, \quad \widehat{G}(\widehat{U}) = \begin{pmatrix} \widehat{q^{y}} & & \\ \mathcal{P}(\widehat{q^{y}})\mathcal{P}^{-1}(\widehat{h})\widehat{q^{x}} & & \\ \mathcal{P}(\widehat{q^{y}})\mathcal{P}^{-1}(\widehat{h})\widehat{q^{y}} + \frac{1}{2}g\mathcal{P}(\widehat{h})\widehat{h} \end{pmatrix}, \quad \widehat{S}(\widehat{U}, \widehat{B}) = \begin{pmatrix} 0 \\ -g\mathcal{P}(\widehat{h})\widehat{B_{x}} \\ -g\mathcal{P}(\widehat{h})\widehat{B_{y}} \end{pmatrix}. \quad (\widehat{Q})$$

Theorem (Hyperbolicity-preserving condition)

The system (1) is hyperbolic if the matrix $\mathcal{P}(\hat{h}) > 0$.

The condition $\mathcal{P}(\hat{h}) > 0$ reduces to h > 0 when the ξ -dependence is dropped from the system.

$$\begin{split} &\frac{\partial h}{\partial t} + \frac{\partial q^x}{\partial x} + \frac{\partial q^y}{\partial y} = 0, \\ &\frac{\partial q^x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{(q^x)^2}{h} + \frac{gh^2}{2} \right) + \frac{\partial}{\partial y} \left(\frac{q^x q^y}{h} \right) = -gh \frac{\partial B}{\partial x}, \\ &\frac{\partial q^y}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^x q^y}{h} \right) + \frac{\partial}{\partial y} \left(\frac{(q^y)^2}{h} + \frac{gh^2}{2} \right) = -gh \frac{\partial B}{\partial y}. \\ &h \text{ is the water height, } q_x \text{ and } q_y \text{ are the } x\text{- and } y\text{-} \\ &\text{ discharges, and } B \text{ is the time-independent surface.} \\ &\text{ All the variables are } \xi\text{-dependent random fields, e.g., } \\ &h = h(x, y, t, \xi). \end{split}$$

Polynomial Chaos Expansion (PCE)

• An unknown random field $z(x, y, t, \xi)$ is represented in the L^2_{ρ} orthonormal basis $\{\phi_k\}_{k \in \mathbb{R}}$, where $\rho \coloneqq \rho(\xi)$ is the density of the random parameter.

$$z(x, y, t, \xi) = \sum_{k=1}^{\infty} \widehat{z}_k(x, y, t)\phi_k(\xi),$$

• K-term truncated PCE:

Theorem (A computationally tractable condition)

Given Λ , let nodes ξ_m and weights τ_m satisfying $\{(\xi_m, \tau_m)\}_{m=1}^M$ represent any M-point positive quadrature rule that is exact on

 $P_{\Lambda}^3 \coloneqq \operatorname{span} \left\{ \prod_{n=1}^3 \phi_n \mid n \in [K] \right\}.$

 $h_{\Lambda}(x, y, t, \xi_m) > 0 \quad \forall \ m = 1, \dots, M,$

then the matrix $\mathcal{P}(\hat{h}) > 0$.

If

In other words, we only need to ensure the positivity of the stochastic water heights at some quadrature points to preserve the hyperbolicity of (1).

Second-Order Central-Upwind Scheme

Assuming uniform rectangular partition over a rectangular region, $\frac{d}{dt}\boldsymbol{U}_{i,j} = -\frac{\mathcal{F}_{i+\frac{1}{2},j} - \mathcal{F}_{i-\frac{1}{2},j}}{\Lambda r} - \frac{\mathcal{G}_{i,j+\frac{1}{2}} - \mathcal{G}_{i,j-\frac{1}{2}}}{\Lambda u} + \overline{\boldsymbol{S}}_{i,j},$ $\boldsymbol{U}_{i,j}^{E,W,N,S}$ are the pointwise values of the secondorder accurate, non-oscillatory piecewise linear reconstructions of $\boldsymbol{U}_{i,j}$ at the midpoints of the boundaries, i.e.,

(3)

$$\boldsymbol{U}_{i,j}^{E} = \boldsymbol{U}_{i,j} + \frac{\Delta x}{2} (\boldsymbol{U}_{x})_{i,j}, \quad \boldsymbol{U}_{i,j}^{W} = \boldsymbol{U}_{i,j} - \frac{\Delta x}{2} (\boldsymbol{U}_{x})_{i,j},$$
$$\boldsymbol{U}_{i,j}^{N} = \boldsymbol{U}_{i,j} + \frac{\Delta y}{2} (\boldsymbol{U}_{y})_{i,j}, \quad \boldsymbol{U}_{i,j}^{S} = \boldsymbol{U}_{i,j} - \frac{\Delta y}{2} (\boldsymbol{U}_{y})_{i,j},$$

Figure 1:Numerical results at T = 0.6 (top), T = 1.2 (middle), and T = 1.8 (bottom), respectively. The largest disks are corresponding to the standard deviation values 2.20e-3, 2.00e-3, and 1.20e-3, respectively. The index set $\Lambda = \{(\nu^{(1)}, \nu^{(2)}) \in$ $\mathbb{N}^2 \mid 0 \leq \nu^{(1)}, \nu^{(2)} \leq 3\}$. The polynomial basis is chosen to be the tensor-product set. Animation can be found in https:

 $\Pi_{\Lambda}[z]\coloneqq \sum_{k=1}^{K}\widehat{z}_{k}(x,y,t)\phi_{k}(\xi),$

where Λ is the index set for the (possibly multivariate) polynomials, the cardinality of Λ is K, and $\phi_1(\xi) = 1$.

• A K-term PCE approximation to product of two random fields a and b:

 $\Pi_{\Lambda}[a,b]\coloneqq\Pi_{\Lambda}[\Pi_{\Lambda}[a]\ \Pi_{\Lambda}[b]]$.

• A K-term PCE approximation to the ratio of two random fields a and b:

 $\Pi^{\dagger}_{\Lambda}[b/a]$: the solution to $\Pi_{\Lambda}[a,b/a] = \Pi_{\Lambda}[b].$

Notations

• $\hat{z} = (\hat{z}_1, \dots, \hat{z}_K)^\top$. • $\mathcal{P}(\hat{z}) \coloneqq \sum_{k=1}^K \hat{z}_k \mathcal{M}_k, \quad (\mathcal{M}_k)_{\ell m} = \langle \phi_k, \phi_\ell \phi_m \rangle_{\rho}$. • It can be shown that $\widehat{\Pi_{\Lambda}[a, b]} = \mathcal{P}(\hat{a})\hat{b}, \qquad \widehat{\Pi_{\Lambda}^{\dagger}[b/a]} = \mathcal{P}^{-1}(\hat{a})\hat{b}.$ where $U_{i,j}$ represent the cell averages of the vector \widehat{U} in rectangular cell $\mathcal{C}_{i,j}$.

• Source term:

 $\mathcal{G}_{i+\frac{1}{2},j} \coloneqq \frac{b_{i,j+\frac{1}{2}}^{+} \widehat{G}(\boldsymbol{U}_{i,j}^{N}) - b_{i,j+\frac{1}{2}}^{-} \widehat{G}(\boldsymbol{U}_{i,j+1}^{S})}{b_{i,j+\frac{1}{2}}^{+} - b_{i,j+\frac{1}{2}}^{-}} + \frac{b_{i,j+\frac{1}{2}}^{+} b_{i,j+\frac{1}{2}}^{-}}{b_{i,j+\frac{1}{2}}^{+} - b_{i,j+\frac{1}{2}}^{-}} \left[\boldsymbol{U}_{i,j+1}^{S} - \boldsymbol{U}_{i,j}^{N} \right].$

Hyperbolicity-Preserving Well-Balanced Central-Upwind Scheme

• Stochastic "lake-at-rest" state:

$$\begin{cases} q^x_{\Lambda} = q^y_{\Lambda} \equiv 0, \\ h_{\Lambda} + \Pi_{\Lambda}[B] \equiv C(\xi), \end{cases} \Rightarrow \begin{cases} \widehat{q^x} = \widehat{q^y} \equiv \mathbf{0}, \\ \widehat{h} + \widehat{B} \equiv \widehat{C}. \end{cases}$$

- The PCE vector B for the bottom function is replaced by its piecewise bilinear interpolant.
 The pointwise values of the reconstructions of the PCE of water surface η are reconstructed. The reconstructed water height are computed by h := η - B.
- The first moments \hat{h}_1 are "corrected" following a similar procedure to the central-upwind scheme for the deterministic shallow water equations.
- The PCE vectors \hat{h} are filtered to satisfies the condition (3).

//ibit.ly/Q6H4

References

[1] Dai D, Epshteyn Y, Narayan A. Hyperbolicity-Preserving and Well-Balanced Stochastic Galerkin Method for Two-Dimensional Shallow Water Equations, 2021, arXiv:2104.11268 https://arxiv.org/abs/2104.11268 [2] Dai, D., Epshteyn, Y. and Narayan, A., 2021. Hyperbolicity-Preserving and Well-Balanced Stochastic Galerkin Method for Shallow Water Equations. SIAM Journal on Scientific Computing, 43(2), pp.A929-A952. https://doi.org/10.1137/20M1360736. [3] Gerster, S., Herty, M. and Sikstel, A., 2019. Hyperbolic stochastic Galerkin formulation for the p-system. Journal of Computational Physics, 395, pp.186-204. [4] Schlachter, L. and Schneider, F., 2018. A hyperbolicitypreserving stochastic Galerkin approximation for uncertain hyperbolic systems of equations. Journal of Computational Physics, 375, pp.80-98. [5] Kurganov, A., 2018. Finite-volume schemes for shallow-

water equations. Acta Numerica, 27, pp.289-351.